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Simulations of tokamak (and other MFE) edge plasmas
need to go beyond collisional (Braginskii) models

Kinetic effects are important in the tokamak edge
Gyro-Landau-fluid (GLF) approach is a way to incorporate some
kinetic effects into fluid simulation codes such as BOUT++
Radial inhomogeneities and large relative perturbation amplitudes
necessitate a non-Fourier implementation of the Landau-fluid (LF)
closure operators

Related work at this workshop:
I S.S. Kim: Gyro-Fluid Simulations using BOUT GLF Code (Friday

9.30am)
I P. W. Xi: Gyrofluid Simulations on KBM and ELMs using BOUT++

(Thursday, 11.10am)
I T. Xia: Six-Field Two-Fluid Simulations (Thursday, 2pm)



The Landau-fluid (LF) closure operators are highly nonlocal
in configuration space

1D (e.g., parallel) collisionless closure phase-mixing:
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I with collisions (Beer-Hammett, Phys. Plasmas ‘96):
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If spatially homogeneous closure model can be used, the LF operators
are easy to represent and efficient to calculate in Fourier (kq) space.



The LF closure operators for edge must deal with spatial
inhomogeneities

Example: toroidal Landau-fluid (|!d|) closure:
e.g., Beer-Hammett ‘96, 3+1 equations:
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I In the edge, T? and Tq have significant spatial variations due to
F

equilibrium profile variation

F
finite amplitude perturbations



Computation of the LF operators becomes challenging when
significant spatial inhomogeneities are present

Operators are no longer local in k space
I Fourier-based computation inefficient

LF operators intrinsically nonlocal in configuration space !
mesh-based discretization schemes used for derivatives (finite
difference, volume, element, etc.) are not directly applicable.
Straightforward direct approach:

I discretize configuration-space kernel
I aplply by direct convolution or matrix multiplication
I computationally expensive; N2

g scaling [vs. Ng log (Ng) for local-k
Fourier]

ACCURATE APPROXIMATIONS ARE POSSIBLE THAT CAN BE
IMPLEMENTED WITH FOURIER-LIKE SCALING.



Approximation by a sum of Lorentzians allows for
computation using efficient sparse linear solvers

Lorentzians in k space are inverses of Helmholtz operators in real space
Could provide very efficient way to implement nonlocality

Consider
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Each individual component of the sum has the correct parity.
With the above scaling of the height and width, different terms
approximately “fill in” different parts of the 1/ |k| curve
Suggests an approximation by a simple truncation.



Simple truncated sum of Lorentzians is very accurate, even
with few terms
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Systematic collocation analysis ! improved fits: collisionless

Collisionless - good (near best) fit is of the form
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Match exact and approximate forms at collocation points
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! matrix problem that can be handled e.g., by Mathematica



Systematic collocation analysis ! improved fits: collisionless

Extends spectral range of good fit by ~10-100 for given N , ↵.
Improved fits vs. original fit
Spectral range of good fit: 7, 20, 80, 400, 2000, 10000
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Systematic collocation analysis ! improved fits: collisional
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Implementation is by replacement of Lorentzians in
wavenumber space by Helmholtz-equation solves

Solve via a tridiagonal (for 2-point differences) or banded (for
higher-order differences) matrix solution
Direct solvers work well

I the matrices are well conditioned
I parallelizeable along direction of solve

Sum the results of the matrix solves
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Normalizing wavenumber k
0

must be chosen to have region
of good fit overlap with resolved modes

Choose k

0

so that
I
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Sum-of-Lorentzians method has similar computational
scaling to Fourier

Scales as Nz log (Nz), c.f. N

2

z for direct convolution or matrix
multiplication.
Crossover point is at Nz ⇡ 128 ) advantage for Nz & 200.
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Using sum of Lorentzians approximation preserves
Hammett-Perkins ‘90 LF response functions

Implemented Mathematica scripts; reproduced HP90 calculations,
modified to also use sum of Lorentzians for 1/|k|.
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Implementation using sum of Lorentzians approximation in
BOUT++ preserves collisionless LF response functions

non-Fourier Fourier



The LF terms have been implemented in BOUT++

|kq| terms implemented using existing parallel “Laplace” solver
I Has correct offset periodic parallel boundary conditions

|!d| terms implemented using modification of existing perpendicular
Laplace solver(s)

I Existing solver solves
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Radial inhomogeneities in rB and curvature drifts can be included via
the manifestly conservative dissipative form:
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Toroidal Landau-fluid (|!
d

|) closure
Definition of i!d
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Good agreement is achieved with previous calculations for
ITG instability frequencies and growth rates



The Landau-Fluid terms are essential for agreement of the
GLF toroidal ITG linear growth rates with gyrokinetic results



Conclusions

We have developed a new non-Fourier method for the calculation of
Landau-fluid operators.
Useful for situations with large (including background) spatial
inhomogeneities.
Good accuracy (relative error . 1.5% over wide spectral range) is
readily achievable with 5 terms for all k�

mfp

.
Computational cost has value and scaling similar to Fourier method.
Considerable advantage over direct convolution or matrix
multiplication for Ng & 200.
Implemented for parallel (|kq|) and toroidal (|!

d

|) LF operators in
BOUT++
Good agreement is achieved with previous calculations for ITG
instability frequencies and growth rates.



Near-term ongoing work: Nonlinear verification with all
“known” GLF physics (see APS-DPP talk)

Implementation of Dorland nonlinear phase-mixing closure:
I Same machinery as for |!d| closure (vd ! ˆr2

?V�

)

GLF model for zonal flows:
I Based on work by Rosenbluth, Hinton & Waltz; Beer & Hammett;

Sugama, Watanabe & Horton.
I Some reworking and inclusion of finite banana width as well as FLR

(can’t separate for typical tokamak edge or tight aspect ratio)
I Include collisions.

Extend implementation of ? closure terms to (completely) non-Fourier
solvers.
Extensions of closures to large amplitude:

I Still phase mixing, but can include some inhomogeneity effects in
closures.


